Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explaining the data or explaining a model? Shapley values that uncover non-linear dependencies (2007.06011v4)

Published 12 Jul 2020 in stat.ML and cs.LG

Abstract: Shapley values have become increasingly popular in the machine learning literature thanks to their attractive axiomatisation, flexibility, and uniqueness in satisfying certain notions of `fairness'. The flexibility arises from the myriad potential forms of the Shapley value \textit{game formulation}. Amongst the consequences of this flexibility is that there are now many types of Shapley values being discussed, with such variety being a source of potential misunderstanding. To the best of our knowledge, all existing game formulations in the machine learning and statistics literature fall into a category which we name the model-dependent category of game formulations. In this work, we consider an alternative and novel formulation which leads to the first instance of what we call model-independent Shapley values. These Shapley values use a (non-parametric) measure of non-linear dependence as the characteristic function. The strength of these Shapley values is in their ability to uncover and attribute non-linear dependencies amongst features. We introduce and demonstrate the use of the energy distance correlations, affine-invariant distance correlation, and Hilbert-Shmidt independence criterion as Shapley value characteristic functions. In particular, we demonstrate their potential value for exploratory data analysis and model diagnostics. We conclude with an interesting expository application to a classical medical survey data set.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Daniel Vidali Fryer (1 paper)
  2. Inga Strümke (33 papers)
  3. Hien Nguyen (33 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.