Papers
Topics
Authors
Recent
2000 character limit reached

On the maximal displacement of catalytic branching random walk

Published 11 Jul 2020 in math.PR | (2007.05815v1)

Abstract: We study the distribution of the maximal displacement of particles positions for the whole time of the population existence in the model of critical and subcritical catalytic branching random walk on Z. In particular, we prove that in the case of simple symmetric random walk on Z, the distribution of the maximal displacement has "a heavy tail" decreasing as a function of the power 1/2 or 1, when the branching process is critical or subcritical, respectively. These statements describe new effects which do not arise in the corresponding investigations of the maximal displacement of critical and subcritical branching random walks on Z.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.