Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new data assimilation method of recovering turbulent flow field at high-Reynolds numbers for turbulence machine learning (2007.05671v1)

Published 11 Jul 2020 in physics.flu-dyn and physics.comp-ph

Abstract: This paper proposes a new data assimilation method for recovering high fidelity turbulent flow field around airfoil at high Reynolds numbers based on experimental data, which is called Proper Orthogonal Decomposition Inversion (POD-Inversion) data assimilation method. Aiming at the flows including shock wave discontinuities or separated flows at high angle of attack, the proposed method can reconstruct high-fidelity turbulent flow field combining with experimental distributed force coefficients. We firstly perform the POD analysis to the turbulent eddy viscosity fields computed by SA model and obtain the base POD modes. Then optimized the POD coefficients by global optimization algorithm coupling with the Navier-Stokes equations solver. The high-fidelity turbulent flied are recovered by several main modes, which can dramatically reduce the dimensions of the system. The effectiveness of the method is verified by the cases of transonic flow around the RAE2822 airfoil at high Reynolds numbers and the separated flow at high angles of attack. The results demonstrate that the proposed assimilation method can recover the turbulent flow field which optimally match the experimental data, and significantly reduce the error of pressure coefficients. The proposed data assimilation method can offer high-fidelity field data for turbulent model based on machine learning.

Summary

We haven't generated a summary for this paper yet.