Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TIMELY: Improving Labeling Consistency in Medical Imaging for Cell Type Classification (2007.05307v1)

Published 10 Jul 2020 in cs.LG, cs.CV, eess.IV, and stat.ML

Abstract: Diagnosing diseases such as leukemia or anemia requires reliable counts of blood cells. Hematologists usually label and count microscopy images of blood cells manually. In many cases, however, cells in different maturity states are difficult to distinguish, and in combination with image noise and subjectivity, humans are prone to make labeling mistakes. This results in labels that are often not reproducible, which can directly affect the diagnoses. We introduce TIMELY, a probabilistic model that combines pseudotime inference methods with inhomogeneous hidden Markov trees, which addresses this challenge of label inconsistency. We show first on simulation data that TIMELY is able to identify and correct wrong labels with higher precision and recall than baseline methods for labeling correction. We then apply our method to two real-world datasets of blood cell data and show that TIMELY successfully finds inconsistent labels, thereby improving the quality of human-generated labels.

Citations (2)

Summary

We haven't generated a summary for this paper yet.