Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Perturbations: Learning Guarantees with Arbitrary Adversarial Test Examples (2007.05145v3)

Published 10 Jul 2020 in cs.LG and stat.ML

Abstract: We present a transductive learning algorithm that takes as input training examples from a distribution $P$ and arbitrary (unlabeled) test examples, possibly chosen by an adversary. This is unlike prior work that assumes that test examples are small perturbations of $P$. Our algorithm outputs a selective classifier, which abstains from predicting on some examples. By considering selective transductive learning, we give the first nontrivial guarantees for learning classes of bounded VC dimension with arbitrary train and test distributions---no prior guarantees were known even for simple classes of functions such as intervals on the line. In particular, for any function in a class $C$ of bounded VC dimension, we guarantee a low test error rate and a low rejection rate with respect to $P$. Our algorithm is efficient given an Empirical Risk Minimizer (ERM) for $C$. Our guarantees hold even for test examples chosen by an unbounded white-box adversary. We also give guarantees for generalization, agnostic, and unsupervised settings.

Citations (36)

Summary

We haven't generated a summary for this paper yet.