Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GPU-accelerated discontinuous Galerkin methods on polytopic meshes (2007.04881v3)

Published 9 Jul 2020 in math.NA and cs.NA

Abstract: Discontinuous Galerkin (dG) methods on meshes consisting of polygonal/polyhedral (henceforth, collectively termed as \emph{polytopic}) elements have received considerable attention in recent years. Due to the physical frame basis functions used typically and the quadrature challenges involved, the matrix-assembly step for these methods is often computationally cumbersome. To address this important practical issue, this work proposes two parallel assembly implementation algorithms on CUDA-enabled graphics cards for the interior penalty dG method on polytopic meshes for various classes of linear PDE problems. We are concerned with both single GPU parallelization, as well as with implementation on distributed GPU nodes. The results included showcase almost linear scalability of the quadrature step with respect to the number of GPU-cores used since no communication is needed for the assembly step. In turn, this can justify the claim that polytopic dG methods can be implemented extremely efficiently, as any assembly computing time overhead compared to finite elements on `standard' simplicial or box-type meshes can be effectively circumvented by the proposed algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.