Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Less is More: Rejecting Unreliable Reviews for Product Question Answering (2007.04526v1)

Published 9 Jul 2020 in cs.CL, cs.IR, and cs.LG

Abstract: Promptly and accurately answering questions on products is important for e-commerce applications. Manually answering product questions (e.g. on community question answering platforms) results in slow response and does not scale. Recent studies show that product reviews are a good source for real-time, automatic product question answering (PQA). In the literature, PQA is formulated as a retrieval problem with the goal to search for the most relevant reviews to answer a given product question. In this paper, we focus on the issue of answerability and answer reliability for PQA using reviews. Our investigation is based on the intuition that many questions may not be answerable with a finite set of reviews. When a question is not answerable, a system should return nil answers rather than providing a list of irrelevant reviews, which can have significant negative impact on user experience. Moreover, for answerable questions, only the most relevant reviews that answer the question should be included in the result. We propose a conformal prediction based framework to improve the reliability of PQA systems, where we reject unreliable answers so that the returned results are more concise and accurate at answering the product question, including returning nil answers for unanswerable questions. Experiments on a widely used Amazon dataset show encouraging results of our proposed framework. More broadly, our results demonstrate a novel and effective application of conformal methods to a retrieval task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Shiwei Zhang (179 papers)
  2. Xiuzhen Zhang (35 papers)
  3. Jey Han Lau (67 papers)
  4. Jeffrey Chan (49 papers)
  5. Cecile Paris (34 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.