Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IQ-VQA: Intelligent Visual Question Answering (2007.04422v1)

Published 8 Jul 2020 in cs.CV and cs.CL

Abstract: Even though there has been tremendous progress in the field of Visual Question Answering, models today still tend to be inconsistent and brittle. To this end, we propose a model-independent cyclic framework which increases consistency and robustness of any VQA architecture. We train our models to answer the original question, generate an implication based on the answer and then also learn to answer the generated implication correctly. As a part of the cyclic framework, we propose a novel implication generator which can generate implied questions from any question-answer pair. As a baseline for future works on consistency, we provide a new human annotated VQA-Implications dataset. The dataset consists of ~30k questions containing implications of 3 types - Logical Equivalence, Necessary Condition and Mutual Exclusion - made from the VQA v2.0 validation dataset. We show that our framework improves consistency of VQA models by ~15% on the rule-based dataset, ~7% on VQA-Implications dataset and robustness by ~2%, without degrading their performance. In addition, we also quantitatively show improvement in attention maps which highlights better multi-modal understanding of vision and language.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Vatsal Goel (1 paper)
  2. Mohit Chandak (1 paper)
  3. Ashish Anand (24 papers)
  4. Prithwijit Guha (13 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.