Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tame algebras have dense $\mathbf{g}$-vector fans (2007.04215v1)

Published 8 Jul 2020 in math.RT

Abstract: The $\mathbf{g}$-vector fan of a finite-dimensional algebra is a fan whose rays are the $\mathbf{g}$-vectors of its $2$-term presilting objects. We prove that the $\mathbf{g}$-vector fan of a tame algebra is dense. We then apply this result to obtain a near classification of quivers for which the closure of the cluster $\mathbf{g}$-vector fan is dense or is a half-space, using the additive categorification of cluster algebras by means of Jacobian algebras. As another application, we prove that for quivers with potentials arising from once-punctured closed surfaces, the stability and cluster scattering diagrams only differ by wall-crossing functions on the walls contained in a separating hyperplane. The appendix is devoted to the construction of truncated twist functors and their adjoints.

Summary

We haven't generated a summary for this paper yet.