Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MCU-Net: A framework towards uncertainty representations for decision support system patient referrals in healthcare contexts (2007.03995v3)

Published 8 Jul 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Incorporating a human-in-the-loop system when deploying automated decision support is critical in healthcare contexts to create trust, as well as provide reliable performance on a patient-to-patient basis. Deep learning methods while having high performance, do not allow for this patient-centered approach due to the lack of uncertainty representation. Thus, we present a framework of uncertainty representation evaluated for medical image segmentation, using MCU-Net which combines a U-Net with Monte Carlo Dropout, evaluated with four different uncertainty metrics. The framework augments this by adding a human-in-the-loop aspect based on an uncertainty threshold for automated referral of uncertain cases to a medical professional. We demonstrate that MCU-Net combined with epistemic uncertainty and an uncertainty threshold tuned for this application maximizes automated performance on an individual patient level, yet refers truly uncertain cases. This is a step towards uncertainty representations when deploying machine learning based decision support in healthcare settings.

Citations (5)

Summary

We haven't generated a summary for this paper yet.