Papers
Topics
Authors
Recent
Search
2000 character limit reached

Non-parametric mean curvature flow with prescribed contact angle in Riemannian products

Published 8 Jul 2020 in math.DG | (2007.03928v5)

Abstract: Assuming that there exists a translating soliton $u_\infty$ with speed $C$ in a domain $\Omega$ and with prescribed contact angle on $\partial\Omega$, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to $u_\infty +Ct$ as $t\to\infty$. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of $\Omega$ and Ricci curvature in $\Omega$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.