Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a practical measure of interference for reinforcement learning (2007.03807v1)

Published 7 Jul 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Catastrophic interference is common in many network-based learning systems, and many proposals exist for mitigating it. But, before we overcome interference we must understand it better. In this work, we provide a definition of interference for control in reinforcement learning. We systematically evaluate our new measures, by assessing correlation with several measures of learning performance, including stability, sample efficiency, and online and offline control performance across a variety of learning architectures. Our new interference measure allows us to ask novel scientific questions about commonly used deep learning architectures. In particular we show that target network frequency is a dominating factor for interference, and that updates on the last layer result in significantly higher interference than updates internal to the network. This new measure can be expensive to compute; we conclude with motivation for an efficient proxy measure and empirically demonstrate it is correlated with our definition of interference.

Citations (5)

Summary

We haven't generated a summary for this paper yet.