Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One-Bit Compressed Sensing via One-Shot Hard Thresholding (2007.03641v2)

Published 7 Jul 2020 in cs.LG, cs.NA, math.NA, and stat.ML

Abstract: This paper concerns the problem of 1-bit compressed sensing, where the goal is to estimate a sparse signal from a few of its binary measurements. We study a non-convex sparsity-constrained program and present a novel and concise analysis that moves away from the widely used notion of Gaussian width. We show that with high probability a simple algorithm is guaranteed to produce an accurate approximation to the normalized signal of interest under the $\ell_2$-metric. On top of that, we establish an ensemble of new results that address norm estimation, support recovery, and model misspecification. On the computational side, it is shown that the non-convex program can be solved via one-step hard thresholding which is dramatically efficient in terms of time complexity and memory footprint. On the statistical side, it is shown that our estimator enjoys a near-optimal error rate under standard conditions. The theoretical results are substantiated by numerical experiments.

Citations (5)

Summary

We haven't generated a summary for this paper yet.