Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decoupled Spatial-Temporal Attention Network for Skeleton-Based Action Recognition (2007.03263v1)

Published 7 Jul 2020 in cs.CV

Abstract: Dynamic skeletal data, represented as the 2D/3D coordinates of human joints, has been widely studied for human action recognition due to its high-level semantic information and environmental robustness. However, previous methods heavily rely on designing hand-crafted traversal rules or graph topologies to draw dependencies between the joints, which are limited in performance and generalizability. In this work, we present a novel decoupled spatial-temporal attention network(DSTA-Net) for skeleton-based action recognition. It involves solely the attention blocks, allowing for modeling spatial-temporal dependencies between joints without the requirement of knowing their positions or mutual connections. Specifically, to meet the specific requirements of the skeletal data, three techniques are proposed for building attention blocks, namely, spatial-temporal attention decoupling, decoupled position encoding and spatial global regularization. Besides, from the data aspect, we introduce a skeletal data decoupling technique to emphasize the specific characteristics of space/time and different motion scales, resulting in a more comprehensive understanding of the human actions.To test the effectiveness of the proposed method, extensive experiments are conducted on four challenging datasets for skeleton-based gesture and action recognition, namely, SHREC, DHG, NTU-60 and NTU-120, where DSTA-Net achieves state-of-the-art performance on all of them.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lei Shi (262 papers)
  2. Yifan Zhang (245 papers)
  3. Jian Cheng (128 papers)
  4. Hanqing Lu (34 papers)
Citations (49)

Summary

We haven't generated a summary for this paper yet.