Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Class Hierarchies with Metric-Guided Prototype Learning (2007.03047v3)

Published 6 Jul 2020 in cs.LG, cs.CV, and stat.ML

Abstract: In many classification tasks, the set of target classes can be organized into a hierarchy. This structure induces a semantic distance between classes, and can be summarised under the form of a cost matrix, which defines a finite metric on the class set. In this paper, we propose to model the hierarchical class structure by integrating this metric in the supervision of a prototypical network. Our method relies on jointly learning a feature-extracting network and a set of class prototypes whose relative arrangement in the embedding space follows an hierarchical metric. We show that this approach allows for a consistent improvement of the error rate weighted by the cost matrix when compared to traditional methods and other prototype-based strategies. Furthermore, when the induced metric contains insight on the data structure, our method improves the overall precision as well. Experiments on four different public datasets - from agricultural time series classification to depth image semantic segmentation - validate our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vivien Sainte Fare Garnot (13 papers)
  2. Loic Landrieu (35 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.