Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective DNN-based Precoder for MIMO Communications (2007.02896v1)

Published 6 Jul 2020 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: This paper introduces a unified deep neural network (DNN)-based precoder for two-user multiple-input multiple-output (MIMO) networks with five objectives: data transmission, energy harvesting, simultaneous wireless information and power transfer, physical layer (PHY) security, and multicasting. First, a rotation-based precoding is developed to solve the above problems independently. Rotation-based precoding is new precoding and power allocation that beats existing solutions in PHY security and multicasting and is reliable in different antenna settings. Next, a DNN-based precoder is designed to unify the solution for all objectives. The proposed DNN concurrently learns the solutions given by conventional methods, i.e., analytical or rotation-based solutions. A binary vector is designed as an input feature to distinguish the objectives. Numerical results demonstrate that, compared to the conventional solutions, the proposed DNN-based precoder reduces on-the-fly computational complexity more than an order of magnitude while reaching near-optimal performance (99.45\% of the averaged optimal solutions). The new precoder is also more robust to the variations of the numbers of antennas at the receivers.

Citations (11)

Summary

We haven't generated a summary for this paper yet.