Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coronary Heart Disease Diagnosis Based on Improved Ensemble Learning (2007.02895v1)

Published 6 Jul 2020 in cs.LG, cs.CV, and eess.IV

Abstract: Accurate diagnosis is required before performing proper treatments for coronary heart disease. Machine learning based approaches have been proposed by many researchers to improve the accuracy of coronary heart disease diagnosis. Ensemble learning and cascade generalization are among the methods which can be used to improve the generalization ability of learning algorithm. The objective of this study is to develop heart disease diagnosis method based on ensemble learning and cascade generalization. Cascade generalization method with loose coupling strategy is proposed in this study. C4. 5 and RIPPER algorithm were used as meta-level algorithm and Naive Bayes was used as baselevel algorithm. Bagging and Random Subspace were evaluated for constructing the ensemble. The hybrid cascade ensemble methods are compared with the learning algorithms in non-ensemble mode and non-cascade mode. The methods are also compared with Rotation Forest. Based on the evaluation result, the hybrid cascade ensemble method demonstrated the best result for the given heart disease diagnosis case. Accuracy and diversity evaluation was performed to analyze the impact of the cascade strategy. Based on the result, the accuracy of the classifiers in the ensemble is increased but the diversity is decreased.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (5)

Summary

We haven't generated a summary for this paper yet.