Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certifying Decision Trees Against Evasion Attacks by Program Analysis (2007.02771v1)

Published 6 Jul 2020 in cs.LG and stat.ML

Abstract: Machine learning has proved invaluable for a range of different tasks, yet it also proved vulnerable to evasion attacks, i.e., maliciously crafted perturbations of input data designed to force mispredictions. In this paper we propose a novel technique to verify the security of decision tree models against evasion attacks with respect to an expressive threat model, where the attacker can be represented by an arbitrary imperative program. Our approach exploits the interpretability property of decision trees to transform them into imperative programs, which are amenable for traditional program analysis techniques. By leveraging the abstract interpretation framework, we are able to soundly verify the security guarantees of decision tree models trained over publicly available datasets. Our experiments show that our technique is both precise and efficient, yielding only a minimal number of false positives and scaling up to cases which are intractable for a competitor approach.

Citations (9)

Summary

We haven't generated a summary for this paper yet.