2000 character limit reached
Hochschild homology and the derived de Rham complex revisited (2007.02576v2)
Published 6 Jul 2020 in math.AG and math.KT
Abstract: We characterize two objects by universal property: the derived de Rham complex and Hochschild homology together with its Hochschild-Kostant-Rosenberg filtration. This involves endowing these objects with extra structure, built on notions of "homotopy-coherent cochain complex" and "filtered circle action" that we study here. We use these universal properties to give a conceptual proof of the statements relating Hochschild homology and the derived de Rham complex, in particular giving a new construction of the filtrations on cyclic, negative cyclic, and periodic cyclic homology that relate these invariants to derived de Rham cohomology.