Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and uniqueness of some Cauchy Type Problems in fractional q-difference calculus (2007.02357v1)

Published 5 Jul 2020 in math.AP and physics.class-ph

Abstract: In this paper we derive a sufficient condition for the existence of a unique solution of a Cauchy type q-fractional problem (involving the fractional q-derivative of Riemann-Liouville type) for some nonlinear differential equations. The key technique is to first prove that this Cauchy type q-fractional problem is equivalent to a corresponding Volterra q-integral equation. Moreover, we define the $q$-analogue of the Hilfer fractional derivative or composite fractional derivative operator and prove some similar new equivalence, existence and uniqueness results as above. Finally, some examples are presented to illustrate our main results in cases where we can even give concrete formulas for these unique solutions.

Summary

We haven't generated a summary for this paper yet.