Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Solution of the Monoenergetic Neutron Transport Equation in a Half Space (2007.02253v1)

Published 5 Jul 2020 in physics.comp-ph

Abstract: The analytical solution of neutron transport equation has fascinated mathematicians and physicists alike since the Milne half-space problem was introduce in 1921 [1]. Numerous numerical solutions exist, but understandably, there are only a few analytical solutions, with the prominent one being the singular eigenfunction expansion (SEE) introduced by Case [2] in 1960. For the half-space, the method, though yielding, an elegant analytical form resulting from half-range completeness, requires numerical evaluation of complicated integrals. In addition, one finds closed form analytical expressions only for the infinite medium and half-space cases. One can find the flux in a slab only iteratively. That is to say, in general one must expend a considerable numerical effort to get highly precise benchmarks from SEE. As a result, investigators have devised alternative methods, such as the CN [3], FN [4] and Greens Function Method (GFM) [5] based on the SEE have been devised. These methods take the SEE at their core and construct a numerical method around the analytical form. The FN method in particular has been most successful in generating highly precise benchmarks. No method yielding a precise numerical solution has yet been based solely on a fundamental discretization until now. Here, we show for the albedo problem with a source on the vacuum boundary of a homogeneous medium, a precise numerical solution is possible via Lagrange interpolation over a discrete set of directions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)