Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multigrid for Bundle Adjustment (2007.01941v1)

Published 3 Jul 2020 in cs.CV, cs.NA, and math.NA

Abstract: Bundle adjustment is an important global optimization step in many structure from motion pipelines. Performance is dependent on the speed of the linear solver used to compute steps towards the optimum. For large problems, the current state of the art scales superlinearly with the number of cameras in the problem. We investigate the conditioning of global bundle adjustment problems as the number of images increases in different regimes and fundamental consequences in terms of superlinear scaling of the current state of the art methods. We present an unsmoothed aggregation multigrid preconditioner that accurately represents the global modes that underlie poor scaling of existing methods and demonstrate solves of up to 13 times faster than the state of the art on large, challenging problem sets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.