Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Qualitative Analysis of Monte Carlo Dropout (2007.01720v1)

Published 3 Jul 2020 in stat.ML and cs.LG

Abstract: In this report, we present qualitative analysis of Monte Carlo (MC) dropout method for measuring model uncertainty in neural network (NN) models. We first consider the sources of uncertainty in NNs, and briefly review Bayesian Neural Networks (BNN), the group of Bayesian approaches to tackle uncertainties in NNs. After presenting mathematical formulation of MC dropout, we proceed to suggesting potential benefits and associated costs for using MC dropout in typical NN models, with the results from our experiments.

Citations (27)

Summary

We haven't generated a summary for this paper yet.