Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding Densest $k$-Connected Subgraphs (2007.01533v1)

Published 3 Jul 2020 in cs.DS, cs.DM, and cs.SI

Abstract: Dense subgraph discovery is an important graph-mining primitive with a variety of real-world applications. One of the most well-studied optimization problems for dense subgraph discovery is the densest subgraph problem, where given an edge-weighted undirected graph $G=(V,E,w)$, we are asked to find $S\subseteq V$ that maximizes the density $d(S)$, i.e., half the weighted average degree of the induced subgraph $G[S]$. This problem can be solved exactly in polynomial time and well-approximately in almost linear time. However, a densest subgraph has a structural drawback, namely, the subgraph may not be robust to vertex/edge failure. Indeed, a densest subgraph may not be well-connected, which implies that the subgraph may be disconnected by removing only a few vertices/edges within it. In this paper, we provide an algorithmic framework to find a dense subgraph that is well-connected in terms of vertex/edge connectivity. Specifically, we introduce the following problems: given a graph $G=(V,E,w)$ and a positive integer/real $k$, we are asked to find $S\subseteq V$ that maximizes the density $d(S)$ under the constraint that $G[S]$ is $k$-vertex/edge-connected. For both problems, we propose polynomial-time (bicriteria and ordinary) approximation algorithms, using classic Mader's theorem in graph theory and its extensions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (16)

Summary

We haven't generated a summary for this paper yet.