Characteristic Logics for Behavioural Hemimetrics via Fuzzy Lax Extensions (2007.01033v6)
Abstract: In systems involving quantitative data, such as probabilistic, fuzzy, or metric systems, behavioural distances provide a more fine-grained comparison of states than two-valued notions of behavioural equivalence or behaviour inclusion. Like in the two-valued case, the wide variation found in system types creates a need for generic methods that apply to many system types at once. Approaches of this kind are emerging within the paradigm of universal coalgebra, based either on lifting pseudometrics along set functors or on lifting general real-valued (fuzzy) relations along functors by means of fuzzy lax extensions. An immediate benefit of the latter is that they allow bounding behavioural distance by means of fuzzy (bi-)simulations that need not themselves be hemi- or pseudometrics; this is analogous to classical simulations and bisimulations, which need not be preorders or equivalence relations, respectively. The known generic pseudometric liftings, specifically the generic Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions, using the fact that both are effectively given by a choice of quantitative modalities. Our central result then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a suitable set of quantitative modalities, the so-called Moss modalities. For nonexpansive fuzzy lax extensions, this allows for the extraction of quantitative modal logics that characterize behavioural distance, i.e. satisfy a quantitative version of the Hennessy-Milner theorem; equivalently, we obtain expressiveness of a quantitative version of Moss' coalgebraic logic. All our results explicitly hold also for asymmetric distances (hemimetrics), i.e. notions of quantitative simulation.
- Abstract and Concrete Categories. Wiley Interscience, 1990. Available as Reprints Theory Appl. Cat. 17 (2006), pp. 1-507.
- Alexandru Baltag. A logic for coalgebraic simulation. In Horst Reichel, editor, Coalgebraic Methods in Computer Science, CMCS 2000, volume 33 of ENTCS, pages 42–60. Elsevier, 2000. doi:10.1016/S1571-0661(05)80343-3.
- Micheal Barr. Relational algebras. In Proc. Midwest Category Seminar, volume 137 of LNM. Springer, 1970. doi:10.1007/bfb0060439.
- Coalgebraic behavioral metrics. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:20)2018.
- Polynomial relators (extended abstract). In Maurice Nivat, Charles Rattray, Teodor Rus, and Giuseppe Scollo, editors, Algebraic Methodology and Software Technology (AMAST ’91), Proceedings of the Second International Conference on Methodology and Software Technology, Iowa City, USA, 22-25 May 1991, Workshops in Computing, pages 303–326. Springer, 1991.
- Bisimulation metrics for weighted automata. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, International Colloquium on Automata, Languages, and Programming, ICALP 2017, volume 80 of LIPIcs, pages 103:1–103:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.103.
- The power of convex algebras. In Roland Meyer and Uwe Nestmann, editors, Concurrency Theory, CONCUR 2017, volume 85 of LIPIcs, pages 23:1–23:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CONCUR.2017.23.
- Generalized bisimulation metrics. In Paolo Baldan and Daniele Gorla, editors, Concurrency Theory, CONCUR 2014, volume 8704 of LNCS, pages 32–46. Springer, 2014. doi:10.1007/978-3-662-44584-6.
- Logical characterization of bisimulation metrics. In Mirco Tribastone and Herbert Wiklicky, editors, Quantitative Aspects of Programming Languages and Systems, QAPL 2016, volume 227 of EPTCS, pages 44–62, 2016. doi:10.4204/EPTCS.227.
- Simulation distances. Theor. Comput. Sci., 413(1):21–35, 2012. doi:10.1016/j.tcs.2011.08.002.
- Corina Cîrstea. A modular approach to defining and characterising notions of simulation. Inf. Comput., 204(4):469–502, 2006. doi:10.1016/j.ic.2005.04.005.
- Modal logics are coalgebraic. The Computer Journal, 54(1):31–41, 2011. doi:10.1093/comjnl/bxp004.
- From Kripke to neighborhood semantics for modal fuzzy logics. In João Paulo Carvalho, Marie-Jeanne Lesot, Uzay Kaymak, Susana M. Vieira, Bernadette Bouchon-Meunier, and Ronald R. Yager, editors, Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2016, volume 611 of CCIS, pages 95–107. Springer, 2016. doi:10.1007/978-3-319-40581-0_9.
- A behavioral distance for fuzzy-transition systems. IEEE Trans. Fuzzy Systems, 21(4):735–747, 2013. doi:10.1109/TFUZZ.2012.2230177.
- Linear and branching system metrics. IEEE Trans. Software Eng., 35(2):258–273, 2009. doi:10.1109/TSE.2008.106.
- Metrics for action-labelled quantitative transition systems. In Antonio Cerone and Herbert Wiklicky, editors, Quantitative Aspects of Programming Languages, QAPL 2005, volume 153(2) of ENTCS, pages 79–96. Elsevier, 2006. doi:10.1016/j.entcs.2005.10.033.
- Behavioural pseudometrics for nondeterministic probabilistic systems. In Martin Fränzle, Deepak Kapur, and Naijun Zhan, editors, Dependable Software Engineering: Theories, Tools, and Applications, SETTA 2016, volume 9984 of LNCS, pages 67–84. Springer, 2016. doi:10.1007/978-3-319-47677-3.
- A logical characterization of bisimulation for labeled Markov processes. In Logic in Computer Science, LICS 1998, pages 478–487. IEEE Computer Society, 1998. doi:10.1109/LICS.1998.705681.
- Josée Desharnais. Labelled Markov processes. PhD thesis, McGill University, 1999.
- Metrics for labelled Markov processes. Theor. Comput. Sci., 318:323–354, 2004. doi:10.1016/j.tcs.2003.09.013.
- Notions of bisimulation for Heyting-valued modal languages. J. Log. Comput., 22(2):213–235, 2012. doi:10.1093/logcom/exq005.
- Tuan-Fang Fan. Fuzzy bisimulation for Gödel modal logic. IEEE Trans. Fuzzy Syst., 23(6):2387–2396, 2015. doi:10.1109/TFUZZ.2015.2426724.
- Melvin Fitting. Many-valued modal logics. Fund. Inform., 15(3-4):235–254, 1991.
- Continuity spaces: Reconciling domains and metric spaces. Theoretical Computer Science, 177(1):111 – 138, 1997. doi:10.1016/S0304-3975(97)00236-3.
- The quantitative linear-time-branching-time spectrum. Theor. Comput. Sci., 538:54–69, 2014. doi:10.1016/j.tcs.2013.07.030.
- The quantitative linear-time–branching-time spectrum. In Supratik Chakraborty and Amit Kumar, editors, Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2011, volume 13 of LIPIcs, pages 103–114. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.FSTTCS.2011.103.
- Behavioural preorders via graded monads. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470517.
- Metrics for finite Markov decision processes. In David Chickering and Joseph Halpern, editors, Uncertainty in Artificial Intelligence, UAI 2004, pages 162–169. AUAI Press, 2004.
- Francesco Gavazzo. Quantitative behavioural reasoning for higher-order effectful programs: Applicative distances. In Anuj Dawar and Erich Grädel, editors, Logic in Computer Science, LICS 2018, pages 452–461. ACM, 2018. doi:10.1145/3209108.
- Algebraic reasoning for probabilistic concurrent systems. In Manfred Broy, editor, Programming concepts and methods, PROCOMET 1990, pages 443–458. North-Holland, 1990.
- Simulations in coalgebra. Theor. Comput. Sci., 327(1-2):71–108, 2004. doi:10.1016/j.tcs.2004.07.022.
- Quantitative analysis and model checking. In Logic in Computer Science, LICS 1997, pages 111–122. IEEE, 1997.
- M. Hennessy and R. Milner. Algebraic laws for non-determinism and concurrency. J. ACM, 32:137–161, 1985.
- Dirk Hofmann. Topological theories and closed objects. Adv. Math., 215(2):789 – 824, 2007. doi:10.1016/j.aim.2007.04.013.
- Monoidal Topology: A Categorical Approach to Order, Metric, and Topology. Cambridge University Press, 2014.
- Expressiveness of positive coalgebraic logic. In Thomas Bolander, Torben Braüner, Silvio Ghilardi, and Lawrence Moss, editors, Advances in Modal Logic, AiML 2012, pages 368–385. College Publications, 2012.
- Equational coalgebraic logic. In Samson Abramsky, Michael Mislove, and Catuscia Palamidessi, editors, Mathematical Foundations of Programming Semantics, MFPS 2009, volume 249 of ENTCS, pages 333–356. Elsevier, 2009. doi:10.1016/j.entcs.2009.07.097.
- Notions of conformance testing for cyber-physical systems: Overview and roadmap (invited paper). In Luca Aceto and David de Frutos-Escrig, editors, Concurrency Theory, CONCUR 2015, volume 42 of LIPIcs, pages 18–40. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.18.
- (Metric) bisimulation games and real-valued modal logics for coalgebras. In Sven Schewe and Lijun Zhang, editors, Concurrency Theory, CONCUR 2018, volume 118 of LIPIcs, pages 37:1–37:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.37.
- F William Lawvere. Metric spaces, generalized logic, and closed categories. Rendiconti del seminario matématico e fisico di Milano, 43(1):135–166, 1973.
- Paul Levy. Similarity quotients as final coalgebras. In Martin Hofmann, editor, Foundations of Software Science and Computational Structures, FOSSACS 2011, volume 6604 of LNCS, pages 27–41. Springer, 2011. doi:10.1007/978-3-642-19805-2.
- Metrics for weighted transition systems: Axiomatization and complexity. Theor. Comput. Sci., 412(28):3358–3369, 2011. doi:10.1016/j.tcs.2011.04.003.
- K. Larsen and A. Skou. Bisimulation through probabilistic testing. Inform. Comput., 94(1):1–28, 1991.
- Managing uncertainty and vagueness in description logics for the semantic web. J. Web Sem., 6(4):291–308, 2008.
- Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
- A probabilistic temporal calculus based on expectations. In Lindsay Groves and Steve Reeves, editors, Formal Methods Pacific, FMP 1997. Springer, 1997.
- Charles Morgan. Local and global operators and many-valued modal logics. Notre Dame J. Formal Log., 20(2):401–411, 1979.
- Lawrence Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96:277–317, 1999.
- Łukasiewicz μ𝜇\muitalic_μ-calculus. Fund. Inf., 150(3–4):317–346, 2017.
- Lax extensions of coalgebra functors and their logic. J. Comput. Syst. Sci., 81(5):880–900, 2015.
- Monads and quantitative equational theories for nondeterminism and probability. In Igor Konnov and Laura Kovács, editors, Concurrency Theory, CONCUR 2020, volume 171 of LIPIcs, pages 28:1–28:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.28.
- David Park. Concurrency and automata on infinite sequences. In Peter Deussen, editor, Theoretical Computer Science, 5th GI-Conference, volume 104 of LNCS, pages 167–183. Springer, 1981. doi:10.1007/BFb0017288.
- Dirk Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Log., 45:19–33, 2004.
- Lattice-valued simulations for quantitative transition systems. Int. J. Approx. Reason., 56:28–42, 2015. doi:10.1016/j.ijar.2014.10.001.
- Modal uncertainty logics with fuzzy neighborhood semantics. In Lluis Godo, Henri Prade, and Guilin Qi, editors, Weighted Logics for Artiticial Intelligence, WL4AI 2013 (Workshop at IJCAI 2013), pages 79–86, 2013.
- Jan Rutten. Universal coalgebra: A theory of systems. Theor. Comput. Sci., 249:3–80, 2000.
- Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theor. Comput. Sci., 390:230–247, 2008.
- Description logics and fuzzy probability. In Toby Walsh, editor, Int. Joint Conf. Artificial Intelligence, IJCAI 2011, pages 1075–1081. AAAI, 2011.
- Umberto Straccia. A fuzzy description logic. In Jack Mostow and Chuck Rich, editors, Artificial Intelligence, AAAI 1998, pages 594–599. AAAI Press / MIT Press, 1998. URL: http://www.aaai.org/Conferences/AAAI/aaai98.php.
- Quantitative analysis of weighted transition systems. J. Log. Algebraic Methods Program., 79(7):689–703, 2010. doi:10.1016/j.jlap.2010.07.010.
- Albert Thijs. Simulation and fixpoint semantics. PhD thesis, University of Groningen, 1996.
- Věra Trnková. General theory of relational automata. Fund. Inform., 3(2):189–234, 1980.
- Recursively defined metric spaces without contraction. Theor. Comput. Sci., 380(1-2):143–163, 2007. doi:10.1016/j.tcs.2007.02.059.
- Franck van Breugel and James Worrell. A behavioural pseudometric for probabilistic transition systems. Theor. Comput. Sci., 331(1):115–142, 2005. doi:10.1016/j.tcs.2004.09.035.
- Rob van Glabbeek. The linear time-branching time spectrum (extended abstract). In Jos Baeten and Jan Willem Klop, editors, Theories of Concurrency, CONCUR 1990, volume 458 of LNCS, pages 278–297. Springer, 1990.
- Cédric Villani. Optimal Transport: Old and New. Springer, 2008.
- Igor Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional μ𝜇\muitalic_μ-calculus. In Logic in Computer Science, LICS 1995, pages 14–24. IEEE Computer Society, 1995. doi:10.1109/LICS.1995.523240.
- Characteristic logics for behavioural metrics via fuzzy lax extensions. In Igor Konnov and Laura Kovács, editors, Concurrency Theory, CONCUR 2020, volume 171 of LIPIcs, pages 27:1–27:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.27.
- A quantified coalgebraic van Benthem theorem. In Stefan Kiefer and Christine Tasson, editors, Foundations of Software Science and Computation Structures - 24th International Conference, FOSSACS 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, volume 12650 of Lecture Notes in Computer Science, pages 551–571. Springer, 2021. doi:10.1007/978-3-030-71995-1_28.
- A van Benthem theorem for fuzzy modal logic. In Anuj Dawar and Erich Grädel, editors, Logic in Computer Science, LICS 2018, pages 909–918. ACM, 2018. doi:10.1145/3209108.
- Paul Wild (18 papers)
- Lutz Schröder (77 papers)