Papers
Topics
Authors
Recent
2000 character limit reached

Consistent Structured Prediction with Max-Min Margin Markov Networks

Published 2 Jul 2020 in cs.LG and stat.ML | (2007.01012v2)

Abstract: Max-margin methods for binary classification such as the support vector machine (SVM) have been extended to the structured prediction setting under the name of max-margin Markov networks ($M3N$), or more generally structural SVMs. Unfortunately, these methods are statistically inconsistent when the relationship between inputs and labels is far from deterministic. We overcome such limitations by defining the learning problem in terms of a "max-min" margin formulation, naming the resulting method max-min margin Markov networks ($M4N$). We prove consistency and finite sample generalization bounds for $M4N$ and provide an explicit algorithm to compute the estimator. The algorithm achieves a generalization error of $O(1/\sqrt{n})$ for a total cost of $O(n)$ projection-oracle calls (which have at most the same cost as the max-oracle from $M3N$). Experiments on multi-class classification, ordinal regression, sequence prediction and ranking demonstrate the effectiveness of the proposed method.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.