Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A deep primal-dual proximal network for image restoration (2007.00959v3)

Published 2 Jul 2020 in cs.CV

Abstract: Image restoration remains a challenging task in image processing. Numerous methods tackle this problem, often solved by minimizing a non-smooth penalized co-log-likelihood function. Although the solution is easily interpretable with theoretic guarantees, its estimation relies on an optimization process that can take time. Considering the research effort in deep learning for image classification and segmentation, this class of methods offers a serious alternative to perform image restoration but stays challenging to solve inverse problems. In this work, we design a deep network, named DeepPDNet, built from primal-dual proximal iterations associated with the minimization of a standard penalized likelihood with an analysis prior, allowing us to take advantage of both worlds. We reformulate a specific instance of the Condat-Vu primal-dual hybrid gradient (PDHG) algorithm as a deep network with fixed layers. The learned parameters are both the PDHG algorithm step-sizes and the analysis linear operator involved in the penalization (including the regularization parameter). These parameters are allowed to vary from a layer to another one. Two different learning strategies: "Full learning" and "Partial learning" are proposed, the first one is the most efficient numerically while the second one relies on standard constraints ensuring convergence in the standard PDHG iterations. Moreover, global and local sparse analysis prior are studied to seek a better feature representation. We apply the proposed methods to image restoration on the MNIST and BSD68 datasets and to single image super-resolution on the BSD100 and SET14 datasets. Extensive results show that the proposed DeepPDNet demonstrates excellent performance on the MNIST and the more complex BSD68, BSD100, and SET14 datasets for image restoration and single image super-resolution task.

Citations (21)

Summary

We haven't generated a summary for this paper yet.