Papers
Topics
Authors
Recent
Search
2000 character limit reached

Instantaneous PSD Estimation for Speech Enhancement based on Generalized Principal Components

Published 1 Jul 2020 in eess.AS and cs.SD | (2007.00542v1)

Abstract: Power spectral density (PSD) estimates of various microphone signal components are essential to many speech enhancement procedures. As speech is highly non-nonstationary, performance improvements may be gained by maintaining time-variations in PSD estimates. In this paper, we propose an instantaneous PSD estimation approach based on generalized principal components. Similarly to other eigenspace-based PSD estimation approaches, we rely on recursive averaging in order to obtain a microphone signal correlation matrix estimate to be decomposed. However, instead of estimating the PSDs directly from the temporally smooth generalized eigenvalues of this matrix, yielding temporally smooth PSD estimates, we propose to estimate the PSDs from newly defined instantaneous generalized eigenvalues, yielding instantaneous PSD estimates. The instantaneous generalized eigenvalues are defined from the generalized principal components, i.e. a generalized eigenvector-based transform of the microphone signals. We further show that the smooth generalized eigenvalues can be understood as a recursive average of the instantaneous generalized eigenvalues. Simulation results comparing the multi-channel Wiener filter (MWF) with smooth and instantaneous PSD estimates indicate better speech enhancement performance for the latter. A MATLAB implementation is available online.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.