Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Content-Aware Automated Parameter Tuning for Approximate Color Transforms (2007.00494v2)

Published 1 Jul 2020 in cs.HC

Abstract: There are numerous approximate color transforms reported in the literature that aim to reduce display power consumption by imperceptibly changing the color content of displayed images. To be practical, these techniques need to be content-aware in picking transformation parameters to preserve perceptual quality. This work presents a computationally-efficient method for calculating a parameter lower bound for approximate color transform parameters based on the content to be transformed. We conduct a user study with 62 participants and 6,400 image pair comparisons to derive the proposed solution. We use the user study results to predict this lower bound reliably with a 1.6% mean squared error by using simple image-color-based heuristics. We show that these heuristics have Pearson and Spearman rank correlation coefficients greater than 0.7 (p<0.01) and that our model generalizes beyond the data from the user study. The user study results also show that the color transform is able to achieve up to 50% power saving with most users reporting negligible visual impairment.

Summary

We haven't generated a summary for this paper yet.