Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matchings in regular graphs: minimizing the partition function (2006.16815v1)

Published 30 Jun 2020 in math.CO

Abstract: For a graph $G$ on $v(G)$ vertices let $m_k(G)$ denote the number of matchings of size $k$, and consider the partition function $M_{G}(\lambda)=\sum_{k=0}nm_k(G)\lambdak$. In this paper we show that if $G$ is a $d$--regular graph and $0<\lambda<(4d){-2}$, then $$\frac{1}{v(G)}\ln M_G(\lambda)>\frac{1}{v(K_{d+1})}\ln M_{K_{d+1}}(\lambda).$$ The same inequality holds true if $d=3$ and $\lambda<0.3575$. More precise conjectures are also given.

Summary

We haven't generated a summary for this paper yet.