Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concave Aspects of Submodular Functions (2006.16784v1)

Published 27 Jun 2020 in cs.DM, cs.IT, cs.LG, math.CO, math.IT, and math.OC

Abstract: Submodular Functions are a special class of set functions, which generalize several information-theoretic quantities such as entropy and mutual information [1]. Submodular functions have subgradients and subdifferentials [2] and admit polynomial-time algorithms for minimization, both of which are fundamental characteristics of convex functions. Submodular functions also show signs similar to concavity. Submodular function maximization, though NP-hard, admits constant-factor approximation guarantees, and concave functions composed with modular functions are submodular. In this paper, we try to provide a more complete picture of the relationship between submodularity with concavity. We characterize the super-differentials and polyhedra associated with upper bounds and provide optimality conditions for submodular maximization using the-super differentials. This paper is a concise and shorter version of our longer preprint [3].

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rishabh Iyer (70 papers)
  2. Jeff Bilmes (38 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.