Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear transformations between dominating sets in the TAR-model (2006.16726v1)

Published 30 Jun 2020 in cs.DM and cs.DS

Abstract: Given a graph $G$ and an integer $k$, a token addition and removal ({\sf TAR} for short) reconfiguration sequence between two dominating sets $D_{\sf s}$ and $D_{\sf t}$ of size at most $k$ is a sequence $S= \langle D_0 = D_{\sf s}, D_1 \ldots, D_\ell = D_{\sf t} \rangle$ of dominating sets of $G$ such that any two consecutive dominating sets differ by the addition or deletion of one vertex, and no dominating set has size bigger than $k$. We first improve a result of Haas and Seyffarth, by showing that if $k=\Gamma(G)+\alpha(G)-1$ (where $\Gamma(G)$ is the maximum size of a minimal dominating set and $\alpha(G)$ the maximum size of an independent set), then there exists a linear {\sf TAR} reconfiguration sequence between any pair of dominating sets. We then improve these results on several graph classes by showing that the same holds for $K_{\ell}$-minor free graph as long as $k \ge \Gamma(G)+O(\ell \sqrt{\log \ell})$ and for planar graphs whenever $k \ge \Gamma(G)+3$. Finally, we show that if $k=\Gamma(G)+tw(G)+1$, then there also exists a linear transformation between any pair of dominating sets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.