Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed Logit Models and Network Formation (2006.16516v5)

Published 30 Jun 2020 in cs.SI, econ.TH, physics.soc-ph, and stat.ML

Abstract: The study of network formation is pervasive in economics, sociology, and many other fields. In this paper, we model network formation as a choice' that is made by nodes in a network to connect to other nodes. We study thesechoices' using discrete-choice models, in which an agent chooses between two or more discrete alternatives. We employ the `repeated-choice' (RC) model to study network formation. We argue that the RC model overcomes important limitations of the multinomial logit (MNL) model, which gives one framework for studying network formation, and that it is well-suited to study network formation. We also illustrate how to use the RC model to accurately study network formation using both synthetic and real-world networks. Using edge-independent synthetic networks, we also compare the performance of the MNL model and the RC model. We find that the RC model estimates the data-generation process of our synthetic networks more accurately than the MNL model. In a patent citation network, which forms sequentially, we present a case study of a qualitatively interesting scenario -- the fact that new patents are more likely to cite older, more cited, and similar patents -- for which employing the RC model yields interesting insights.

Citations (6)

Summary

We haven't generated a summary for this paper yet.