Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Natural Gradient for Combined Loss Using Wavelets (2006.15806v1)

Published 29 Jun 2020 in math.NA, cs.LG, cs.NA, and math.OC

Abstract: Natural gradients have been widely used in optimization of loss functionals over probability space, with important examples such as Fisher-Rao gradient descent for Kullback-Leibler divergence, Wasserstein gradient descent for transport-related functionals, and Mahalanobis gradient descent for quadratic loss functionals. This note considers the situation in which the loss is a convex linear combination of these examples. We propose a new natural gradient algorithm by utilizing compactly supported wavelets to diagonalize approximately the Hessian of the combined loss. Numerical results are included to demonstrate the efficiency of the proposed algorithm.

Citations (3)

Summary

We haven't generated a summary for this paper yet.