Bilinear Multipliers of Small Lebesgue spaces (2006.15716v1)
Abstract: Let $G$ be a locally compact abelian metric group with Haar measure $\lambda $ and $\hat{G}$ its dual with Haar measure $\mu ,$ and $\lambda ( G) $ is finite. Assume that$~1<p_{i}<\infty $, $p_{i}{\prime }=\frac{ p_{i}}{p_{i}-1}$, $( i=1,2,3) $ and $\theta \geq 0$. Let $ L{(p_{i}{\prime },\theta }( G) ,$ $( i=1,2,3) $ be small Lebesgue spaces. A bounded measurable function $m( \xi ,\eta ) $ defined on $\hat{G}\times \hat{G}$ is said to be a bilinear multiplier on $G$ of type $[ (p_{1}{\prime };(p_{2}{\prime };(p_{3}{\prime }] {\theta }$ if the bilinear operator $B{m}$ associated with the symbol $m$, \begin{equation} B_{m}(f,g) ( x) =\sum_{s\in \hat{G} }\sum_{t\in \hat{G}}\hat{f}(s) \hat{g}(t) m(s,t) \langle s+t,x\rangle \end{equation} defines a bounded bilinear operator from $L{(p_{1}{\prime },\theta }( G) \times L{(p_{2}{\prime },\theta }( G) $ into $ L{(p_{3}{\prime },\theta }(G) $. We denote by $BM_{\theta } [ (p_{1}{\prime };(p_{2}{\prime };(p_{3}{\prime }] $ the space of all bilinear multipliers of type $[ (p_{1}{\prime };(p_{2}{\prime };(p_{3}{\prime }] {\theta }$. In this paper, we discuss some basic properties of the space $BM{\theta }[ (p_{1}{\prime };(p_{2}{\prime };(p_{3}{\prime }] $ and give examples of bilinear multipliers.