Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When and How Can Deep Generative Models be Inverted? (2006.15555v1)

Published 28 Jun 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Deep generative models (e.g. GANs and VAEs) have been developed quite extensively in recent years. Lately, there has been an increased interest in the inversion of such a model, i.e. given a (possibly corrupted) signal, we wish to recover the latent vector that generated it. Building upon sparse representation theory, we define conditions that are applicable to any inversion algorithm (gradient descent, deep encoder, etc.), under which such generative models are invertible with a unique solution. Importantly, the proposed analysis is applicable to any trained model, and does not depend on Gaussian i.i.d. weights. Furthermore, we introduce two layer-wise inversion pursuit algorithms for trained generative networks of arbitrary depth, and accompany these with recovery guarantees. Finally, we validate our theoretical results numerically and show that our method outperforms gradient descent when inverting such generators, both for clean and corrupted signals.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com