Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and Low-cost Search for Efficient Cloud Configurations for HPC Workloads (2006.15481v1)

Published 28 Jun 2020 in cs.DC

Abstract: The use of cloud computational resources has become increasingly important for companies and researchers to access on-demand and at any moment high-performance resources. However, given the wide variety of virtual machine types, network configurations, number of instances, among others, finding the best configuration that reduces costs and resource waste while achieving acceptable performance is a hard task even for specialists. Thus, many approaches to find these good or optimal configurations for a given program have been proposed. Observing the performance of an application in some configuration takes time and money. Therefore, most of the approaches aim not only to find good solutions but also to reduce the search cost. One approach is the use of Bayesian Optimization to observe the least amount possible of configurations, reducing the search cost while still finding good solutions. Another approach is the use of a technique named Paramount Iteration to make performance assumptions of HPC workloads without entirely executing them (early-stopping), reducing the cost of making one observation, and making it feasible to grid search solutions. In this work, we show that both techniques can be used together to do fewer and low-cost observations. We show that such an approach can recommend Pareto-optimal solutions that are on average 1.68x better than Random Searching and with a 6-time cheaper search.

Citations (5)

Summary

We haven't generated a summary for this paper yet.