Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

You Shall not Pass: Avoiding Spurious Paths in Shortest-Path Based Centralities in Multidimensional Complex Networks (2006.15401v2)

Published 27 Jun 2020 in cs.SI and physics.soc-ph

Abstract: In complex network analysis, centralities based on shortest paths, such as betweenness and closeness, are widely used. More recently, many complex systems are being represented by time-varying, multilayer, and time-varying multilayer networks, i.e. multidimensional (or high order) networks. Nevertheless, it is well-known that the aggregation process may create spurious paths on the aggregated view of such multidimensional (high order) networks. Consequently, these spurious paths may then cause shortest-path based centrality metrics to produce incorrect results, thus undermining the network centrality analysis. In this context, we propose a method able to avoid taking into account spurious paths when computing centralities based on shortest paths in multidimensional (or high order) networks. Our method is based on MultiAspect Graphs~(MAG) to represent the multidimensional networks and we show that well-known centrality algorithms can be straightforwardly adapted to the MAG environment. Moreover, we show that, by using this MAG representation, pitfalls usually associated with spurious paths resulting from aggregation in multidimensional networks can be avoided at the time of the aggregation process. As a result, shortest-path based centralities are assured to be computed correctly for multidimensional networks, without taking into account spurious paths that could otherwise lead to incorrect results. We also present a case study that shows the impact of spurious paths in the computing of shortest paths and consequently of shortest-path based centralities, such as betweenness and closeness, thus illustrating the importance of this contribution.

Summary

We haven't generated a summary for this paper yet.