Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The COVID-19 (SARS-CoV-2) Uncertainty Tripod in Brazil: Assessments on model-based predictions with large under-reporting (2006.15268v1)

Published 27 Jun 2020 in q-bio.PE, math.DS, and physics.soc-ph

Abstract: The COVID-19 pandemic (SARS-CoV-2 virus) is the defying global health crisis of our time. The absence of mass testing and the relevant presence of asymptomatic individuals causes the available data of the COVID-19 pandemic in Brazil to be largely under-reported regarding the number of infected individuals and deaths. We propose an adapted Susceptible-Infected-Recovered (SIR) model which explicitly incorporates the under-reporting and the response of the population to public policies (such as confinement measures, widespread use of masks, etc) to cast short-term and long-term predictions. Large amounts of uncertainty could provide misleading models and predictions. In this paper, we discuss the role of uncertainty in these prediction, which is illustrated regarding three key aspects. First, assuming that the number of infected individuals is under-reported, we demonstrate an anticipation regarding the peak of infection. Furthermore, while a model with a single class of infected individuals yields forecasts with increased peaks, a model that considers both symptomatic and asymptomatic infected individuals suggests a decrease of the peak of symptomatic. Second, considering that the actual amount of deaths is larger than what is being register, then demonstrate the increase of the mortality rates. Third, when consider generally under-reported data, we demonstrate how the transmission and recovery rate model parameters change qualitatively and quantitatively. We also investigate the effect of the "COVID-19 under-reporting tripod", i.e. the under-reporting in terms of infected individuals, of deaths and the true mortality rate. If two of these factors are known, the remainder can be inferred, as long as proportions are kept constant. The proposed approach allows one to determine the margins of uncertainty by assessments on the observed and true mortality rates.

Summary

We haven't generated a summary for this paper yet.