Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Idempotents of $2\times 2$ matrix rings over rings of formal power series (2006.15070v1)

Published 26 Jun 2020 in math.RA

Abstract: Let $A_1,\ldots,A_s$ be unitary commutative rings which do not have non-trivial idempotents and let $A=A_1\oplus\cdots\oplus A_s$ be their direct sum. We describe all idempotents in the $2\times 2$ matrix ring $M_2(A[[X]])$ over the ring $A[[X]]$ of formal power series with coefficients in $A$ and in arbitrary set of variables $X$. We apply this result to the matrix ring $M_2({\mathbb Z}_n[[X]])$ over the ring ${\mathbb Z}_n[[X]]$ for an arbitrary positive integer $n$ greater than 1. Our proof is elementary and uses only the Cayley-Hamilton theorem (for $2\times 2$ matrices only) and, in the special case $A={\mathbb Z}_n$, the Chinese reminder theorem and the Euler-Fermat theorem.

Summary

We haven't generated a summary for this paper yet.