Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled N-dimensional wave equation as port-Hamiltonian system (2006.15032v4)

Published 26 Jun 2020 in math.NA, cs.NA, and math.DS

Abstract: The anisotropic and heterogeneous $N$-dimensional wave equation, controlled and observed at the boundary, is considered as a port-Hamiltonian system. A recent structure-preserving mixed Galerkin method is applied, leading directly to a finite-dimensional port-Hamiltonian system: its numerical analysis is carried out in a general framework. Optimal choices of mixed finite elements are then proved to reach the best trade-off between the convergence rate and the number of degrees of freedom for the state error. Exta compatibility conditions are identified for the Hamiltonian error to be twice that of the state error, and numerical evidence is provided that some combinations of finite element families meet these conditions. Numerical simulations in 2D are performed to illustrate the main theorems among several choices of classical finite element families. Several test cases are provided, including non-convex domain, anisotropic or hetergoneous cases and absorbing boundary conditions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.