Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Unifying Framework for Reinforcement Learning and Planning

Published 26 Jun 2020 in cs.LG, cs.AI, cs.RO, and stat.ML | (2006.15009v4)

Abstract: Sequential decision making, commonly formalized as optimization of a Markov Decision Process, is a key challenge in artificial intelligence. Two successful approaches to MDP optimization are reinforcement learning and planning, which both largely have their own research communities. However, if both research fields solve the same problem, then we might be able to disentangle the common factors in their solution approaches. Therefore, this paper presents a unifying algorithmic framework for reinforcement learning and planning (FRAP), which identifies underlying dimensions on which MDP planning and learning algorithms have to decide. At the end of the paper, we compare a variety of well-known planning, model-free and model-based RL algorithms along these dimensions. Altogether, the framework may help provide deeper insight in the algorithmic design space of planning and reinforcement learning.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.