Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

An approximation to zeros of the Riemann zeta function using fractional calculus (2006.14963v5)

Published 25 Jun 2020 in math.NA, cs.NA, math.NT, and physics.app-ph

Abstract: In this document, as far as the authors know, an approximation to the zeros of the Riemann zeta function has been obtained for the first time using only derivatives of constant functions, which was possible only because a fractional iterative method was used. This iterative method, valid for one and several variables, uses the properties of fractional calculus, in particular the fact that the fractional derivatives of constants are not always zero, to find multiple zeros of a function using a single initial condition. This partly solves the intrinsic problem of iterative methods that if we want to find N zeros it is necessary to give N initial conditions. Consequently, the method is suitable for approximating nontrivial zeros of the Riemann zeta function when the absolute value of its imaginary part tends to infinity. The deduction of the iterative method is presented, some examples of its implementation, and finally 53 different values near to the zeros of the Riemann zeta function are shown.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com