Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stability of a star-shaped network with local Kelvin-Voigt damping and non-smooth coefficient at interface

Published 24 Jun 2020 in math.AP and math.OC | (2006.14949v1)

Abstract: In this paper, we study the stability problem of a star-shaped network of elastic strings with a local Kelvin-Voigt damping. Under the assumption that the damping coefficients have some singularities near the transmission point, we prove that the semigroup corresponding to the system is polynomially stable and the decay rates depends on the speed of the degeneracy. This result improves the decay rate of the semigroup associated to the system on an earlier result of Z.~Liu and Q.~Zhang in \cite{LZ} involving the wave equation with local Kelvin-Voigt damping and non-smooth coefficient at interface.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.