Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Optimal Transport for Cross-Domain Alignment (2006.14744v3)

Published 26 Jun 2020 in cs.CL, cs.CV, and cs.LG

Abstract: Cross-domain alignment between two sets of entities (e.g., objects in an image, words in a sentence) is fundamental to both computer vision and natural language processing. Existing methods mainly focus on designing advanced attention mechanisms to simulate soft alignment, with no training signals to explicitly encourage alignment. The learned attention matrices are also dense and lacks interpretability. We propose Graph Optimal Transport (GOT), a principled framework that germinates from recent advances in Optimal Transport (OT). In GOT, cross-domain alignment is formulated as a graph matching problem, by representing entities into a dynamically-constructed graph. Two types of OT distances are considered: (i) Wasserstein distance (WD) for node (entity) matching; and (ii) Gromov-Wasserstein distance (GWD) for edge (structure) matching. Both WD and GWD can be incorporated into existing neural network models, effectively acting as a drop-in regularizer. The inferred transport plan also yields sparse and self-normalized alignment, enhancing the interpretability of the learned model. Experiments show consistent outperformance of GOT over baselines across a wide range of tasks, including image-text retrieval, visual question answering, image captioning, machine translation, and text summarization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Liqun Chen (42 papers)
  2. Zhe Gan (135 papers)
  3. Yu Cheng (354 papers)
  4. Linjie Li (89 papers)
  5. Lawrence Carin (203 papers)
  6. Jingjing Liu (139 papers)
Citations (131)

Summary

We haven't generated a summary for this paper yet.