Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heat kernel bounds for a large class of Markov process with singular jump (2006.14111v2)

Published 25 Jun 2020 in math.PR

Abstract: Let $Z=(Z{1}, \ldots, Z{d})$ be the $d$-dimensional L\'evy processes where $Z{i}$'s are independent $1$-dimensional L\'evy processes with jump kernel $J{\phi, 1}(u,w) =|u-w|{-1}\phi(|u-w|){-1}$ for $u, w\in \mathbb R$. Here $\phi$ is an increasing function with weak scaling condition of order $\underline \alpha, \overline \alpha\in (0, 2)$. Let $J(x,y) \asymp J\phi (x,y)$ be the symmetric measurable function where \begin{align*} J\phi(x,y):=\begin{cases} J{\phi, 1}(xi, yi)\qquad&\text{ if $xi \ne yi$ for some $i$ and $xj = yj$ for all $j \ne i$}\ 0\qquad&\text{ if $xi \ne yi$ for more than one index $i$.} \end{cases} \end{align*} Corresponding to the jump kernel $J$, we show the existence of non-isotropic Markov processes $X:=(X{1}, \ldots, X{d})$ and obtain sharp two-sided heat kernel estimates for the transition density functions.

Summary

We haven't generated a summary for this paper yet.