Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating MRI Reconstruction on TPUs (2006.14080v1)

Published 24 Jun 2020 in cs.CE and eess.IV

Abstract: The advanced magnetic resonance (MR) image reconstructions such as the compressed sensing and subspace-based imaging are considered as large-scale, iterative, optimization problems. Given the large number of reconstructions required by the practical clinical usage, the computation time of these advanced reconstruction methods is often unacceptable. In this work, we propose using Google's Tensor Processing Units (TPUs) to accelerate the MR image reconstruction. TPU is an application-specific integrated circuit (ASIC) for machine learning applications, which has recently been used to solve large-scale scientific computing problems. As proof-of-concept, we implement the alternating direction method of multipliers (ADMM) in TensorFlow to reconstruct images on TPUs. The reconstruction is based on multi-channel, sparsely sampled, and radial-trajectory $k$-space data with sparsity constraints. The forward and inverse non-uniform Fourier transform operations are formulated in terms of matrix multiplications as in the discrete Fourier transform. The sparsifying transform and its adjoint operations are formulated as convolutions. The data decomposition is applied to the measured $k$-space data such that the aforementioned tensor operations are localized within individual TPU cores. The data decomposition and the inter-core communication strategy are designed in accordance with the TPU interconnect network topology in order to minimize the communication time. The accuracy and the high parallel efficiency of the proposed TPU-based image reconstruction method are demonstrated through numerical examples.

Citations (21)

Summary

We haven't generated a summary for this paper yet.