Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Slice Sampling for General Completely Random Measures (2006.13925v2)

Published 24 Jun 2020 in stat.ML, cs.LG, stat.CO, and stat.ME

Abstract: Completely random measures provide a principled approach to creating flexible unsupervised models, where the number of latent features is infinite and the number of features that influence the data grows with the size of the data set. Due to the infinity the latent features, posterior inference requires either marginalization---resulting in dependence structures that prevent efficient computation via parallelization and conjugacy---or finite truncation, which arbitrarily limits the flexibility of the model. In this paper we present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables, enabling efficient, parallelized computation without sacrificing flexibility. In contrast to past work that achieved this on a model-by-model basis, we provide a general recipe that is applicable to the broad class of completely random measure-based priors. The efficacy of the proposed algorithm is evaluated on several popular nonparametric models, demonstrating a higher effective sample size per second compared to algorithms using marginalization as well as a higher predictive performance compared to models employing fixed truncations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.