Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Neural Network based Distance Estimation for Geometry Calibration in Acoustic Sensor Networks (2006.13769v1)

Published 24 Jun 2020 in eess.AS and cs.SD

Abstract: We present an approach to deep neural network based (DNN-based) distance estimation in reverberant rooms for supporting geometry calibration tasks in wireless acoustic sensor networks. Signal diffuseness information from acoustic signals is aggregated via the coherent-to-diffuse power ratio to obtain a distance-related feature, which is mapped to a source-to-microphone distance estimate by means of a DNN. This information is then combined with direction-of-arrival estimates from compact microphone arrays to infer the geometry of the sensor network. Unlike many other approaches to geometry calibration, the proposed scheme does only require that the sampling clocks of the sensor nodes are roughly synchronized. In simulations we show that the proposed DNN-based distance estimator generalizes to unseen acoustic environments and that precise estimates of the sensor node positions are obtained.

Citations (4)

Summary

We haven't generated a summary for this paper yet.