Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Non-Local Priors via Self-Convolution For Highly-Efficient Image Restoration (2006.13714v2)

Published 24 Jun 2020 in cs.CV

Abstract: Constructing effective image priors is critical to solving ill-posed inverse problems in image processing and imaging. Recent works proposed to exploit image non-local similarity for inverse problems by grouping similar patches and demonstrated state-of-the-art results in many applications. However, compared to classic methods based on filtering or sparsity, most of the non-local algorithms are time-consuming, mainly due to the highly inefficient and redundant block matching step, where the distance between each pair of overlapping patches needs to be computed. In this work, we propose a novel Self-Convolution operator to exploit image non-local similarity in a self-supervised way. The proposed Self-Convolution can generalize the commonly-used block matching step and produce equivalent results with much cheaper computation. Furthermore, by applying Self-Convolution, we propose an effective multi-modality image restoration scheme, which is much more efficient than conventional block matching for non-local modeling. Experimental results demonstrate that (1) Self-Convolution can significantly speed up most of the popular non-local image restoration algorithms, with two-fold to nine-fold faster block matching, and (2) the proposed multi-modality image restoration scheme achieves superior denoising results in both efficiency and effectiveness on RGB-NIR images. The code is publicly available at \href{https://github.com/GuoLanqing/Self-Convolution}.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com